1 基本简介
蓝光LED蓝光LED,也称发光二极管(LightEmittingDiode,LED),是一种半导体组件。初时多用作为指示灯、显示板等;随着白光LED的出现,也被用作照明。它被誉为21世纪的新型光源,具有效率高,寿命长,不易破损等传统光源无法与之比较的优点。加正向电压时,发光二极管能发出单色、不连续的光,这是电致发光效应的一种。改变所采用的半导体材料的化学组成成分,可使发光二极管发出在近紫外线、可见光或红外线的光。
1955年,美国无线电公司(RadioCorporationofAmerica)的鲁宾?布朗石泰(RubinBraunstein)(1922年生)首次发现了砷化镓(GaAs)及其它半导体合金的红外放射作用。
1962年,通用电气公司的尼克?何伦亚克(NickHolonyakJr.)(1928年生)开发出种实际应用的可见光发光二极管。
LED(Light Emitting Diode),发光二极管,是一种固态的半导体器件,它可以直接把电转化为光。LED的心脏是一个半导体的晶片,晶片的一端附在一个支架上,一端是负极,另一端连接电源的正极,使整个晶片被环氧树脂封装起来。半导体晶片由两部分组成,一部分是P型半导体,在它里面空穴占主导地位,另一端是N型半导体,在这边主要是电子。但这两种半导体连接起来的时候,它们之间就形成一个“P-N结”。当电流通过导线作用于这个晶片的时候,电子就会被推向P区,在P区里电子跟空穴复合,然后就会以光子的形式发出能量,这就是LED发光的原理。而光的波长也就是光的颜色,是由形成P-N结的材料决定的。
2 历史沿革
蓝光LED 爱迪生之后的第二次照明革命1879年,美国发明家托马斯·爱迪生发明了灯泡,1882年初春,批实用的白炽灯终于问世了,它给千家万户带来了光明和欢乐,白炽灯是爱迪生对人类辉煌的贡献之一。但爱迪生发明的白炽灯也有缺点,就是其效率很低,约等16流明/瓦,相当于仅有4%的电能转化为光能。
1900年,彼得·库珀-休伊特于发明了荧光灯,其效率高达70流明/瓦。白光LED则超过300流明/瓦,被用于照明的白光LED常常建立在高亮度的蓝光LED的基础之上,后者能激发一个荧光磷,这样蓝色的光被转化成白色的光。
1907年,在英国马可尼电子公司工作的英国工程师亨利·约瑟夫-劳德次在一块碳化硅晶体里观察到电致发光现象。他在一块碳化硅晶体的两个触点之间施加了电压,结果发现:在低电压下,可以看到黄光;而在高电压下,可以看到更多颜色的光,这种“电致发光”现象也奠定了LED被发明的物理基础。
1962年,美国通用电气公司34岁的普通研究人员尼克·何伦亚克发明了可以发出红色可见光的LED,他的名字也随LED的红光一起红了起来。由于何伦亚克的发明后来得到了广泛的应用,所以一般称他为“发光二极管之父”。
1972年,何伦亚克的学生乔治·克劳福德站在巨人的肩膀上,发明了颗橙黄光LED,其亮度是先前红光LED的10倍,这标志着LED向提高发光效率方向迈出的步。
1973年,当时在日本松下电器公司东京研究所的赤崎勇早开始了蓝光LED的研究。后来,赤崎勇和天野浩在名古屋大学合作进行了蓝光LED的基础性研发,1989年首次研发成功了蓝光LED。
1993年,在日本日亚化工(Nichia Corporation)工作的39岁的中村修二终于发明了基于氮化镓和铟氮化镓的具有商业应用价值的蓝光LED,从而引发了照明技术的新革命。凭借此项发明,他荣获2006年千禧科技奖,这相当于科技界的诺贝尔!不久之后,人们在蓝光LED的基础上加入黄色荧光粉,就得到了白色光LED,利用这种荧光粉技术可以制造出任何颜色光的LED(如紫色光和粉红色光)。蓝光和白光LED的出现拓宽了LED的应用领域,使全彩色LED显示、LED照明等应用成为可能。
2001年,愤怒的中村修二将自己的雇主告上法庭。终法院裁决日亚化学公司应当支付给中村修二200亿日元,按照当时汇率约合2亿美元的费用。这一巨大的金额震惊了当时的日本社会,但法院认为这一判决是相当公正的,因为他们评估后认为中村修二的发明成果至少价值600亿日元(约合5.8亿美元)。但当事方日亚化学公司不服裁决并向高等法院提起上诉,终历经4年拉锯战,高等法院终裁定日亚化学公司偿付中村修二8.4亿日元,按当时汇率约折合810万美元的费用。中村修二无奈接受了这一结果。
2013年,全年产值猛增到5000多亿元。家庭、办公、道路等各种场所的照明以及绚烂的景观灯光,这些市场“主力军”如今都是LED。“前几年谈到LED,我们需要对公众进行科普,现在家里装修,老百姓都会考虑买这种比传统节能灯更节能的灯具。”
3 诺贝尔奖
三名日本科学家据诺贝尔官方称,日本科学家赤崎勇、天野浩和美籍日裔科学家中村修二因发明“高亮度蓝色发光二极管”荣膺2014年诺贝尔物理学奖,诺贝尔奖评选委员会在声明中表示,三位获奖者在发明新型高效、环境友好型光源,即蓝光LED方面做出了巨大的贡献。
借用蓝光LED,白光可以以新的方式被创造出来。使用LED灯,我们可以拥有更持久和高效的灯光代替原来的光源,不仅能为人类节省大量能源,也能照亮全球更多地方。[1]
4 物理原理
发光二极管是一种特殊的二极管。和普通的二极管一样,发光二极管由半导体芯片组成,这些半导体材料会预先通过注入或掺杂等工艺以产生pn结结构。与其它二极管一样,发光二极管中电流可以轻易地从p极(阳极)流向n极(负极),而相反方向则不能。
两种不同的载流子:空穴和电子在不同的电极电压作用下从电极流向pn结。当空穴和电子相遇而产生复合,电子会跌落到较低的能阶,同时以光子的方式释放出能量。它所发出的光的波长,及其颜色,是由组成pn结的半导体物料的禁带能量所决定。由于硅和锗是间接禁带材料,在这些材料中电子与空穴的复合是非辐射跃迁,此类跃迁没有释出光子,所以硅和锗二极管不能发光。发光二极管所用的材料都是直接禁带型的,这些禁带能量对应着近红外线、可见光、或近紫外线波段的光能量。
5 优缺点
LED被称为第四代光源,具有节能、环保、安全、寿命长、低功耗、低热、高亮度、防水、微型、防震、易调光、光束集中、维护简便等特点,可以广泛应用于各种指示、显示、装饰、背光源、普通照明等领域。
LED优点:电光转化效率高(接近100%)、绿色环保、寿命长(可达10万小时)、工作电压低(3V左右)、反复开关无损寿命、体积小、发热少、亮度高、坚固耐用、易于调光、色彩多样、光束集中稳定、启动无延时;
LED缺点:起始成本高、显色性差、大功率LED效率低、恒流驱动(需专用驱动电路)。?相比之下,各种传统照明存在一定的缺陷。
白炽灯:电光转化效率低(10%左右)、寿命短(1000小时左右)、发热温度高、颜色单一且色温低;
荧光灯:电光转化效率不高(30%左右)、危害环境(含汞等稀土元素,约3.5-5mg/只)、不可调亮度(低电压无法启辉发光)、紫外辐射、闪烁现象、启动较慢、稀土原料涨价(荧光粉占成本比重由10%上升到60~70%)、反复开关影响寿命;体积大。
高压气体放电灯:耗电量大、使用不安全、光效低、寿命短、散热问题,多用于室外照明。
6 发光颜色
三种不同颜色的LED铝砷化稼(AlGaAs)-红色及红外线
铝磷化稼(AlGaP)-绿色
aluminiumgalliumindiumphosphide(AlGaInP)-高亮度的橘红色,橙色,黄色,绿色
磷砷化稼(GaAsP)-红色,橘红色,黄色
三种不同颜色的LED图册
磷化稼(GaP)-红色,黄色,绿色
氮化镓(GaN)-绿色,翠绿色,蓝色
铟氮化稼(InGaN)-近紫外线,蓝绿色,蓝色
碳化硅(SiC)(用作衬底)-蓝色
硅(Si)(用作衬底)-蓝色(开发中)
蓝宝石(Al2O3)(用作衬底)-蓝色
zincselenide(ZnSe)-蓝色
钻石(C)-紫外线
氮化铝(AlN),aluminiumgalliumnitride(AlGaN)-波长为远至近的紫外线