有奖任务

功率电感

[编辑日期:2014/12/15 16:20:39]

功率电感功率电感是分带磁罩和不带磁罩两种,主要由磁芯和铜线组成。?在电路中主要起滤波和振荡作用。

功率电感一般是指电气工程中用的,能承受大功率的电感器,如大型电机(AC)降压起动用的电感器(也叫电抗器)。功率电感是分带磁罩和不带磁罩两种,主要由磁芯和铜线组成。

一般电子线路中的电感是空心线圈,或带有磁芯的线圈,只能通过较小的电流,承受较低的电压;而功率电感也有空心线圈的,也有带磁芯的,主要特点是用粗导线绕制,可承受数十安,数百,数千,甚至于数万安。

?功率电感有以下两个主要作用

(1)阻流作用:线圈中的自感电动势总是与线圈中的电流变化相对抗。主要可分为高频阻流线圈及低频阻流线圈。

(2)调谐与选频作用:电感线圈与电容器并联可组成LC调谐电路。即电路的固有振荡频率f0与非交流信号的频率f相等,则回路的感抗与容抗也相等,于是电磁能量就在电感、电容之间来回振荡,这就是LC回路的谐振现象。谐振时由于电路的感抗与容抗等值又反向,因此回路总电流的感抗小,电流量大(指f=f0的交流信号),所以LC谐振电路具有选择频率的作用,能将某一频率f的交流信号选择出来。

1. 低损耗、体积小、便于自动表面贴装

2.高导磁率,低损耗,

3.电感量可从几UH至几百H ,

4.产品具有大电流、大工作电流可达几十A。

5.高功率及高磁饱和性,低阻抗、

6自动表面贴装的绕线电感器,

7.加磁罩的产品除具

8.普通贴片电感的特点外,还具有更强的抗干扰能力

贴片功率电感1.?手提电脑、手提电话

2. 可用于PDA掌上电脑、MP3、数码相机

3. LED、MP3、MP4、网卡

4. 电脑显卡、EL背光、电源模块

5. 彩色电视机、网络通信

6. 对讲机、接收机

7. 传真机,办工设备

8. 仪器仪表,机械设备

9. 安防产品、遥控玩具

10.医疗设备、工控设备

11.无线收发器、防盗设备

12.电子表、蓝牙

13.运动器材等。

14.随着电子产品的发展应用越来越广泛。[1]

贴片功率电感线径/圈数计算公式

来源:时间:2012-09-04 12:27:57

功率电感加载其电感量按下式计算:线圈公式

阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH),设定需用 360ohm 阻抗,因此:

电感量(mH) = 阻抗 (ohm) ÷ (2*3.14159) ÷ F (工作频率) = 360 ÷ (2*3.14159) ÷ 7.06 = 8.116mH

据此可以算出绕线圈数:

圈数 = [电感量* { ( 18*圈直径(吋)) + ( 40 * 圈长(吋))}] ÷ 圈直径 (吋)

圈数 = [8.116 * {(18*2.047) + (40*3.74)}] ÷ 2.047 = 19 圈

空心电感计算公式

空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H)

D------线圈直径

N------线圈匝数

d-----线径

H----线圈高度

W----线圈宽度

单位分别为毫米和mH。。

空心线圈电感量计算公式:

l=(0.01*D*N*N)/(L/D+0.44)

线圈电感量 l单位: 微亨

线圈直径 D单位: cm

线圈匝数 N单位: 匝

线圈长度 L单位: cm

频率电感电容计算公式:

l=25330.3/[(f0*f0)*c]

工作频率: f0 单位:MHZ 本题f0=125KHZ=0.125

谐振电容: c 单位:PF 本题建义c=500...1000pf 可自行先决定,或由Q

值决定

谐振电感: l 单位: 微亨

1。针对环行CORE,有以下公式可利用: (IRON)

L=N2.AL L= 电感值(H)

H-DC=0.4πNI / l N= 线圈匝数(圈)

AL= 感应系数

H-DC=直流磁化力 I= 通过电流(A)

l= 磁路长度(cm)

l及AL值大小,可参照Micrometal对照表。例如: 以T50-52材,线圈5圈半,其L值为T50-52(表示OD为0.5英吋),经查表其AL值约为33nH

L=33.(5.5)2=998.25nH≈1μH

当流过10A电流时,其L值变化可由l=3.74(查表)

H-DC=0.4πNI / l = 0.4×3.14×5.5×10 / 3.74 = 18.47 (查表后)

即可了解L值下降程度(μi%)

2。介绍一个经验公式

L=(k*μ0*μs*N2*S)/l

其中

μ0 为真空磁导率=4π*10(-7)。(10的负七次方)

μs 为线圈内部磁芯的相对磁导率,空心线圈时μs=1

N2 为线圈圈数的平方

S 线圈的截面积,单位为平方米

l 线圈的长度, 单位为米

k 系数,取决于线圈的半径(R)与长度(l)的比值。

计算出的电感量的单位为亨利。

功率电感 共模电感 贴片磁珠贴片电感一体电感 电感器 大电流电感 SMD功率电感 插件电感色环电感插件磁珠 工字电感 叠成电感

CD31功率电感 CD42功率电感 CD43功率电感 CD51功率电感 CD52功率电感 CD54功率电感 CD73功率电感 CD75功率电感 CD104功率电感 CD105功率电感

CDH2D11功率电感 CDH3B12(3D12)功率电感 CDH3B16(3D16)功率电感 CDH4B18(4D18)功率电感 CDH4B28(4D28)功率电感 CDH5B18(5D18)功率电感 CDH5B28(5D28)功率电感 CBH8B28(8D28)功率电感 CDH8B43(8D43)功率电感

CN1210(3225)功率电感 CN1812(4532)功率电感 B3316功率电感 B3340功率电感 B5022功率电感 BF1608功率电感 BF5022功率电感

CDH62功率电感 CDH74电感 CDH125功率电感 CDH127功率电感

AL0307色环电感 AL0410色环电感 AL0510色环电感

LH0406工形电感 LH0608工形电感 LH0810工形电感 LH0912工形电感 LH1016工形电感

1005(0402)叠层电感高频电感铁氧体电感 1608(0603)叠层电感高频电感铁氧体电感 2012(0805)叠层电感高频电感铁氧体电感 3216(1206)叠层电感铁氧体电感

1005(0402)叠层磁珠 1608(0603)叠层磁珠 2012(0805)叠层磁珠 3216(1206)叠层磁珠

RH3.5*4.7插件磁珠 RH3.5*6.0插件磁珠 RH3.5*9.0插件磁珠

KQ07VC-R56M一体插件电感 KQ07VC-R68M一体插件电感 KQ07VC-1R0M一体插件电感 KQ07VC-1R5M一体插件电感,

KQ10VC-1R0M一体插件电感 KQ10VC-1R2M一体插件电感 KQ12XP-R39M一体插件电感 KQ10VC-1R2M一体插件电感,

KQ13VC-4R7M一体插件电感 KQ13VC-1R2M一体插件电感

LQM21PN2R2MC0D(TDK GLFR系列、TAIYO YUDEN CKP或LB系列、MURUTA的LQH系列) 片式大电流电感

LFB182G45SG9A293(MBPF18M2450-M11)蓝牙滤波器

DLW21SN371SQ2(MGCC2012M371T)共模电感

Company name: SHENZHEN MOTTO TECHNOLOGY CO.,LTD。

功率电感移动电话、相机、笔记本电脑的磁盘驱动器以及便携式音频播放器只是少数还在使用的传统电子元件,现在需要更多的是功率电感器。将日益复杂的电路整合到更加狭小的电路板空间中的巨大的市场压力导致了性能更佳的、极具竞争力的、更为精巧的终端元件的需求增大。电路板上的大功率转化终端元件的广泛应用也导致了高效率直流转换器和更精细电感器需求的增加。为了适应这一挑战,元件制造商都花重金在材料与制作上发展、生产和改善绕线和多层片式电感器,用具有相等或更好的性能的但也更加精细的设计来迎合市场的需要。

1、精细功率电感器

在便携式电子产品的电源供应器设计当中,面临的大挑战是,既要提高电源供应器的工作效率还要减小它的尺寸,也就是说要设计在电力供应设计中好使用小的电感器。解决此难题的办法之一是,提高DC/DC转换器的开关频率,这是影响低电感和小尺寸元件的关键。由负荷波动引起的瞬态响应较低的电感值是抵消了更好的。在这种情况下,伴随着负载波动所引起的更快的瞬态响应,低电感值因高频率而偏移。

但是,有得必有失,提高开关频率的同时也增加了开关损耗,这同样会导致工作效率的降低。由于其他重要电路设计之间相互作用会影响器件性能这一特点,所以仅仅靠增加开关频率并非易事。

近期,开关频率一直保持在500kHz左右而电感在4.7~10μH,这些因素包括提供更好的电路设计,改进材料,完善制造技术,都能让开关频率保持在1MHz以下。

然而,内部电路的进一步细化使得开关频率已经高达3MHz,但同时电感值也低于了2.0H。据推算,6~8MHz的开关频率以及低于1H的电感值并不常见,这就导致了电感器小型化的戏剧性。

2、较高的开关频率

1-A级电感器的发展趋势是小包装,低电感和更快的开关频率。例如拥有300kHz开关频率但面积只有16或36mm2的电感器将被广泛使用。使用一个9mm2大小的电感器能将开关频率提高为1.5MHz,这表明在增加开关频率的同时也在相应地减小尺寸。未来要提供更精细电感器的关键在于部件制造商是否有能力通过在电路设计、材料和制造等方面的不断进步来降低电感和提高开关频率。

手机用电感器技术的进步已经在包装厚度上显现了出来,例如,从两三年前2mm到现在的1mm。该技术的显著改善让靠超薄元件支持器件的微型化趋势持续吸引着全球电子产品消费市场。即便如此,单纯靠使用较小的电感器也不是一个完善的解决方案。

3、绕线改善

规模较小的便携式设备需要更紧凑的更高效率的DC/DC转换器,靠这些补充设备的强大功能来大限度的完善电池能量。尽管大的元件难以同时缩减电感尺寸和保持较低阻抗,厂商们依然在通过更好的设计,改进材料科学,提高制造技术来减少电感器尺寸。

功率电感功率耗损的估算

若以简单电路来描述电感器的耗损,其中RC代表磁芯耗损,RAC与RDC分别代表交流与直流绕线耗损,RC可以透过磁芯耗损的估算取得,RAC与RDC则分别为:因表面效应与近接效应所引起的直流绕线电阻与交流电阻。

内文:若以交换式电源控制器来架构此耗损模型范例,设定输入电压(VIN)为12V,输出电压(VOUT)为5V、且输出电流(IOUT)为2A的降压式转换器形式运作,并采4.7mH的电感,会带来621mA的电感电流涟波,相关磁芯耗损与磁通密度和频率的关系可参考,其中峰对峰磁通密度才是重要关键,它会依循大型迟滞回路中的小型迟滞回路路径变化,请参考图二中的内回路,峰对峰磁通密度则可以透过使用电感器资料规格书中所提供的方程式取得。另一方面,也可以使用电感器电压第二乘积除以绕线数以及绕线内磁芯的面积来取得。

在613高斯(Gauss)下的磁芯耗损大约为470mW,图五中的RC为电感器中造成磁芯功率耗损的等效并联电阻,这个电阻可以由电感器两端的RMS电压、以及磁芯功率耗损计算中取得。[2]

在交换周期中,因磁芯功率电感磁性能量变化所造成的能源耗损,为导通时间以磁能方式存入磁芯、以及在关闭时由磁芯所提取磁能量间的差异。因此,存入磁芯的总能量为图二中B-H回路阴影区域乘上磁芯的体积大小。当功率电感电流下降时,磁场强度降低,磁通密度会循着图二中的不同路径(依据箭头的方向)变化,其中大部分的能量会进入负载,储存能量与发出能量间的差,就是能量的耗损。磁芯的能量耗损为B-H回路所画出的区域乘上磁芯的体积,这个能量乘以切换频率就是功率耗损。迟滞耗损依函数而定,对大部分的铁氧体材料来说,n大约位在2.5到3的范围,但这只有在磁芯没有成为饱和状态、同时交换频率落在规定运作范围内才有效。图二中的阴影区域显示,B-H回路的象限为磁通密度的运作区域,因为大部分的升压式与降压式转换器都以正电感电流运作。

贴片功率电感磁芯功率电感的第二个耗损来源为涡流电流。涡流电流是磁芯物质因磁通量变化所造成的电流,依据愣次定律(Lenz’s Law),磁通量的变化会带来一个产生与初始磁通量变化方向相反的反向电流;这个称为涡流的电流,会流进传导磁芯材料,并造成功率耗损。这也可以由法拉第定律看出。由涡流电流所造成的磁芯功率耗损,正比于磁芯磁通量变化率的平方。由于磁通量变化率直接正比于所加上的电压,因此涡流电流的功率耗损会随着所加上电感电压的平方增加,并直接与它的波宽相关。相对于迟滞区间耗损,磁芯涡流电流通常会因磁芯材料的高电阻而低上许多,通常磁芯耗损的资料,会同时计入迟滞区间以及磁芯涡流电流的耗损。

要测量磁芯耗损通常相当困难,因为其包含相当复杂用来测量磁通密度的测试设置安排、以及对迟滞回路的估算。迄今许多电感器制造商并没有提供这方面的资料,不过却有部分可以用来估算出电感器磁芯耗损的一些特性曲线,这可以由铁氧体材料制造商、峰对峰磁通密度与频率的函数得出。如果知道电感器磁芯所采用的特定铁氧体材料以及体积大小,那么就可以利用这些曲线有效地估算出磁芯耗损。

这类曲线,例如铁氧体材料,是以加入双极磁通量变化信号的正弦波变化电压的方式取得,当以方波型式(包含更高频谐波)以及单极磁通量变化,运作进行直流对直流转换器的磁芯耗损估算时,可以使用基础频率以及1/2的峰对峰磁通密度进行,电感器的体积或重量也能够经过测量或计算得出。

功率电感之磁芯的功率耗损

部分电感器制造商有提供磁芯耗损图、或者是可以用来取得更加磁芯功率耗损估算的方程式,在部分厂商电感器资料规格书中,有提供电感器的磁芯耗损方程式。磁芯耗损是由采用常数(K-factors)的方程式提供,因此可以藉由频率以及峰对峰的电感电流涟波函数,来计算磁芯耗损。另一方面,厂商也会以图形方式,提供许多电感器产品的磁芯耗损。

贴片电感是闭合回路的一种属性。当贴片电感的线圈通过电流后,贴片电感在线圈中形成磁场感应,感应磁场又会产生感应电流来抵制通过线圈中的电流。贴片电感在电路中起到的作用是在通过非稳恒电流时产生变化的磁场,而这个磁场又会反过来影响电流,贴片电感在电源回路中串如电感,电感对直流是直通的,对高频脉冲是高阻的,所以起到通直流阻交流脉冲的作用。

电阻用来控制电路中的电流,电容用来隔直流通交流, 电感用来阻高频通低频的,另一方面电容和电感都是储能元件,所以在电路中还有滤波作用。贴片电感在电路中具有阻止交流电通过而让直流电顺利通过的特性。电感的特性是通直流、阻交流,频率越高,线圈阻抗越大。电感器在电路中经常和电容一起工作

电感线圈有阻止交流电路中电流变化的特性。电感线圈有与力学中的惯性相类似的特性,在电学上取名为'自感应',贴片电感在低频时,电感一般呈现电感特性,既只起蓄能,滤高频的特性,但在高频时,它的阻抗特性表现的很明显。有耗能发热,感性效应降低等现象。不同的电感的高频特性都不一样。[3]

扩展阅读:

销售商: